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Hypersonic viscous interaction on curved surfaces 

By J. L. STOLLERY 
Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio1 

(Received 9 December 1969) 

Cheng’s analysis of strong viscous interaction between a laminar boundary layer 
growing over a flat plate and the external hypersonic flow field is extended to 
cover curved surfaces. It is demonstrated that the solutions for some concave 
surfaces are oscillatory and quantitatively unrealistic. The reason for this 
behaviour is that the Busemann term in the Newton-Busemann pressure law 
used in Cheng’s analysis over-corrects for centrifugal effects. The removal of the 
Busemann term or the substitution of the tangent-wedge pressure law results in 
an alternative analysis which can cover both strong and weak viscous interaction 
over a wide variety of two-dimensional shapes. A number of examples are 
included together with comparative experimental data. 

1. Introduction 
Laminar boundary-layer growth at  hypersonic speeds can severely distort the 

external flow field, which in turn reacts to modify the boundary-layer growth. 
A good example of such viscous interaction is the flow near the leading edge of a 
flat plate where the boundary-layer growth gives rise to a strong, curved, oblique 
shock-wave followed by an expansion fan. The surface pressure distribution is then 
entirely different from the inviscid prediction. Rapid changes of boundary-layer 
growth will also occur in regions of strong pressure gradient, whether helpful or 
adverse, and in the design of any surface for high altitude hypersonic flight it is 
essential to predict the boundary-layer displacement thickness and hence the 
effective body shape with the modified pressure distribution that it supports. 

The classic paper by Cheng et al. (1961) laid the foundations of the problem by 
clearly demonstrating the mutual effects of local surface incidence and boundary- 
layer growth. By adopting Lees’ (1956) local flat plate similarity theory for 
hypersonic boundary layers, together with the Newton-Busemann approxima- 
tion for the pressure distribution, Cheng was able to elegantly uncover the 
controlling parameter for strong viscous interaction over any shape of sharp 
edged surface, though the analysis was applied only to flat plates at  incidence. 

The use of the Newton-Busemann pressure law limited this work to regions of 
strong interaction but any one of a number of approximate pressure relations 
can be used in its place. More recently Sullivan (1969) has used the tangent-wedge 
approximation in combination with Lees’ (1 956) boundary-layer theory to 
investigate the flow around a convex corner. 

t Permanent address : Aeronautics Department, Imperial College London. 
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The aim of this paper is to apply both Cheng's analysis, and modifications of it, 
to a wider variety of two-dimensional shapes, to compare and contrast the results 
and to discuss them in the light of experimental data wherever possible. 

2. Analysis 

the following results (Prandtl number = 1): 
The local flat plate similarity solution for hypersonic boundary layers leads to 

and Cf N 2Xt, (4) 

where X is the viscous interaction parameter M:Ct(Re,)-*, St is the Stanton 
number, Tw and To are the wall and stagnation temperatures respectively, P is the 
non-dimensional pressure distribution p ( x ) / p a  and the other symbols are stan- 
dard. Values of the constants for other Prandtl numbers have been quoted by 
Dewey (1963) and Sullivan (1968). 

If the pressure distribution can be expressed in terms of the effective body 

P = p ( Y e ) ,  ( 5 )  
shape, ye(x),  8s 

where Y e  = Yw 4 6" (6) 

then (l) ,  (5) and (6) can be solved for P, ye  and 6" once the surface shape yW(x)  
is specified. 

If the Newton-Busemann relation is used for the pressure distribution then 

P = YJE(gL2+yey,") = YMZ(Y~YL)', (7) 

which, when substituted in (l), leads to the following result 

This is identical to Cheng's result apart from the minor change of y now 
appearing in the denominator in place of unity. Equation (8) is the fundamental 
equation for ye given any shape of wall and a number of examples will be con- 
sidered. Since the right-hand side of (8) is constant it can be reduced to unity by 
appropriate scaling. 

2.1. Flat plate at zero incidence 
If yW = 0 then writing 

z=  yell and g = xll (9) 

t Ax takes the place of X, ms used by Cheng et al. These two parameters differ only in 
( y -  l)/(y+ 1) in Cheng's theory. In the Newtonian approxima- that &y- 1) replaces E 

tion used by Cheng differences of order y - 1 are mathematically irrelevant. 
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converts equation (8) to Z((ZZ')+)' = 1, 

provided that 

Substitution of z = kCm in equation (10) shows that it is satisfied for m = 2 and 
k = 24/3* yielding the familiar strong interaction results: 

P = ($y)UX,  (13) 

and St/St, = i ( 3 y ) ) .  (AX)+, (14) 

where St,, the Stanton number for a flat plate flow with no viscous interaction, is 

(15) 
given by St, = 0*332(C/Re,)*. 

The weak viscous interaction solution where P+ 1 as yL-+ 0 does not satisfy the 
Newton-Busemann relation and hence is not a solution of equation (10). 

2.2. Surfaces described by yw = kx" 

is of some interest and includes the flat plate at incidence, (n = 

governing equation may now be written as 
1). The 

(2 T 6) ((2x')B)' = 1, (17) 

provided that 

In  terms of the new variables the required physical quantities are 

and 

D 

Thus from the scaling it is immediately apparent that the important parameter 
which controls the relative importance of the effects of incidence and strong 
viscous interaction is ( .M2,az/A~).  

2.3 Alternative expressions for the pressure law, P(y,) 

The scope of the theoretical analysis can be extended by using an alternative 
pressure law which is capable of embracing both the strong and weak viscous 

32-2 
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interaction r6gimes. For example a simple Newtonian law could be used in the 
form P = pipw = 1 + yM%yL2 3 1 + 1/K2, (22) 

where K = May:, (23) 

so that Pin the free-stream is interpreted as unity rather than zero. One of the 
more successful approximations at hypersonic speeds is the tangent wedge rule, 

P = 1 + Y K 2 [ y + ( ( q a + & ) b ] ,  

and Sullivan (1969) has used this in place of the Newton-Busemann law to 
examine flow past a convex corner. Though the use of either of the above pressure 
relationships decreases the mathematical elegance there is a great gain in 
practical utility and the subsequent analysis is straightforward. 

The boundary-layer growth may be expressed (see equation (1)) as 

-- Mw6* - AX (3”. $ 
L 

and if L, a characteristic length, is chosen such that 

then 

and 

where 

L = A2X2x, 

x = x / L  = (Ax)+ 

Mm6*lL = R*/P, 

dRldX = P. 

Equation (28) may be differentiated to give 

(25) 

and d&*ldx may be expressed in terms of P from either of the pressure laws. The 

(31) 
result for a family of shapes 

where Y, = yJaL and X = x /L ,  is 

Y, = X”, 

where 

dR 
dX  - p’ 

& =  + for the tangent wedge rule 

_ -  

P - 1  

(33) 

and 

The analysis underlines the importance of M, a and AX as the relevant parameters 
but they must now be specified independently for solutions of the pair of equations 
(32) and (33). 

for the Newtonian pressure distribution. 
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Once M, a is specified then the equation pair may be solvedfor any given shape. 
For example the substitution of a! = 0 (ffat plate at zero incidence) and P = kX" 
with P 9 1 enables k and m to be evaluated so that 

or 
P = $[y(y + 1)]4. A;iZ (tangent wedge) (34) 

P = $ ( + y ) t . A z  (Newtonian), (35) 

is the appropriate result for strong viscous interaction. The weak viscous inter- 
action condition is also satisfied since 

dP 1 dP 
~ +- as P - t l ,  i.e.-+O as X - t c o .  ax 2 x  ax 

3. Results, comparisons with experimental data and discussion 
The governing equations for both Cheng's and the modified theories have been 

solved for a variety of surfaces including the flat plate at  both positive and 
negative incidence, concave and convex plates (n = 2,3)  and compression and 
expansion corners. The numerical results were obtained by digital computation 
using an IBM 7094 machine and Fortran I V  language. A standard third-order 
Runge-Kutta technique was adopted with double precision arithmetic and a step 
size of usually 

3.1. Flat plate at zero incidence 

Comparisons between the various theories and some experimental data are shown 
in figures 1 and 2. Cheng's theory is strictly for strong interaction only, though it 
can be used more widely if the calculated pressure distribution is interpreted as 
(P  - P,,,). Either way the theory immediately highlights the importance of the 
parameter Ax. The use of the tangent-wedge rule for pressure gives a smooth 

( A w l  

FIGURE 1. A comparison between various theoretical estimates of the pressure distribution 
induced on a sharp flat plate at zero incidence. - 1, complete solution (Sullivan) ; 
- 2, Cheng's theory,p/p, = ($y)&AX; - - - - ,weak interaction theoryplp, = 1 + &yAX; 
-.-.- , strong interaction theory. 
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transition from strong to weak interaction, as shown by Sullivan (1969). Figure 2 
suggests that Sullivan’s theory predicts the Stanton number reasonably ac- 
curately but overestimates the pressure level. The scatter in the experimental 
pressure data is due partly to low density effects. 

3.2. Flat plate at incidence 

The pressure distribution over a flat plate at positive incidence (i.e. nose down) 
as calculated using the methods of Cheng and Sullivan is shown in figure 3. 
The results indicate that near the leading edge the displacement effect is 

X e  I (2 / y+ l )AX 

FIGURE 2. Correlation of pressure and heat transfer data on sharp flat plates. -, theory, 
Pr = 1. Data for both diagrams taken from Holden (1970). 
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dominant and the pressure distribution is identical to that on a flat plate a t  zero 
incidence. Further downstream the incidence effects increase in importance and 
eventually the pressure level asymptotes to the inviscid limit. 

Cheng’s theory holds for all values of M a  provided that the shock is strong. 
Kemp (1969) has recently reported some tests in helium at M = 42 which show 
that Cheng’s theory predicts the trends quite well under these conditions. 

If the tangent-wedge approximation is used then there is a different solution 
for every value of M a  and the asymptotic pressure level is 

P, 2 = (q-~[(~)2+111.,]”+~- Y + l  1 1 

95- 
This will only approach Cheng’s value of unity when M, a 9 1 and y = 1. Because of 
these differing asymptotes the curves look dissimilar. A more realistic comparison 
can be achieved either by interpreting Cheng’s result as P-Pwedge so that his 
asymptotic value becomes 

or by plotting all the results as 

Pwedge = 1 + yM201.2, 

E - w e d g e  + 1. y M F  

Presented in this way the curves compare well, see figure 4 (a). 
The heat transfer rates calculated by the two methods are similar, figure 

4 (b ) ,  the agreement improving as M a  is increased. Cheng’s results show that it 
is not until M2a2/AXis of order unity that large deviations from the zero incidence 
condition occur. Cheng’s zero incidence flat plate value for the Stanton number 
may be conveniently expressed as 

(3y)t  M2a2 3 
0.332 x 4ya3 - 8y ’ { AX ] ’ 

-- - A . S t  
(37) 

Similar remarks apply to the negative incidence results. Any calculations 
made using Cheng’s method must show the pressure distribution tending 
asymptotically to zero whereas the tangent wedge limit is given by 

Since P cannot be negative the lowest permissible value of M a  is - [2 /y(y  - 1)]4. 
Of course the range of the calculations could be extended by using a more suitable 
pressure law for expanding flows. 

3.3. Concave surfaces: Y, = Xn (n = 2’3) 
The most striking feature of the results obtained by applying Cheng’s theory to 
these shapes is the ‘oscillatory’ behaviour of the boundary layer.? The boundary 
layer, dominated near the leading edge by displacement effects, grows initially 

t The theoretical asymptotic behaviour of equation (17) has been investigated by 
Mohammadian (private communication) and found to be oscillatory for concave surfaces 
of the form y = kxa provided that n > 1. Similar oscillatory behaviour has been noted by 
Cheng & Kirsch (1969) in their recent study of intense explosions. 
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as though supported by a flat plate. Faced with the adverse pressure gradient 
downstream the boundary layer thins dramatically to a ‘neck’ then widens again 
and the cycle of events is then repeated. Beneath each ‘neck’ the pressure and 
heat transfer rate reach local peaks. This pattern of behaviour is similar in 
character but much more severe in magnitude to that found experimentally and 
it appears that the Busemann centrifugal correction is far too powerful in the 
assumed pressure law. As the flow moves around the surface the dominant 

1712, aZIAz 

FIGURE 3. Predictions of the pressure distribution on a flat plate at  positive incidence. 
- 1 ,  Cheng ; - - - 2 ,  strong viscous interaction, flat plate at a = 0. 

influence changes from displacement to incidence and the pressure should 
approach the inviscid value, 

For n = 2 (TI, = X 2 )  this relationship implies that 
(39) P = ylM:(Y,Y;)’. 

M2a2 4 -- P - 6 X 2  = 96y2{-] 
yN2a2 AX 

and, as figure 5 shows, the pressure distribution does in fact oscillate about this 
line for X large. 

Similar remarks apply to the cubic surface, the downstream pressure levels 
oscillating about the curve 

P M2a2 * yiM2a2 = 15X4 = 3840 y 4 [ 2 F ]  . 

When the more realistic tangent-wedge approximation is used then there is no 
oscillation, the boundary-layer thickness decreasing steadily as the pressure 
rises. As a further check the modified Newtonian pressure distribution, 

P = l i -yK2,  

was used to calculate the flow around the quadratic surface and the result is also 
plotted on figure 5. There is no oscillatory behaviour and the numerical values are 
close to those calculated using the tangent-wedge law. 
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10-2 t I I I \  I 
10-3 10-2 10-1 1 10 \ 100 

MZ &/AX 

FIGURE 4 (a). Pressure distribution on flat plates at positive and negative incidence. 
- 1, Cheng, u > 0; - 2, Cheng, a < 0. Complete solutions using the tangent-wedge 
rule, values of M,u : 0, 0.1; 0, 1.0; x ,  10; V, -0.1; A, -1.0. 

FIGURE 4 (b ) .  Heat transfer to a flat plate at  positive and negative incidence. - 1, Cheng, 
u > 0; - 2, Cheng, a = 0; - 3, Cheng, a < 0. M,u: 0 , O . l ;  0 , l . O ;  V , - 0.1 ; A, - 1.0; 
x ,  10. 
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Figure 6 shows the heat transfer rate distributions for the body yw = kx2. 
Values calculated using Cheng’s method oscillate about the limiting value which 
for this shape of body is 

‘10-4 10-3 1 0 - 2  10-1 1 10 

f M L  a2/AX 

FIGURE 5. The pressure distribution on a concave surface of the form yw = kxg. __ 1, strong 
interaction, flat plate at a = 0;  - 2, Cheng’s theory; -- 3, 96 ~ ~ { M L C C ~ / A X } ~ .  Tangent 
wedge, M,a: x ,  0.1; 0, 1.0. pe/pm = l+yM%y:, M,a: 0, 1.0. 

FIGURE 6 .  The heat transfer to a concave surface of the form yw = kx2. -- 1, Cheng’s 
theory; ---2,solutionusingtsngent-wedgerulo,Mma = 1 ;  - - -3 ,  G ( & ~ ) * M L ~ ~ / A X ; - - ~ ,  
asymptotio value, ye = yw. 
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In  contrast the values calculated using either the tangent-wedge or modified 
Newtonian pressure laws are well behaved, approach the asymptotic value 
smoothly and are physically more realistic. 

Two theoretical predictions of boundary-layer growth over a cubic surface 
(y ,  = x3/150) are compared with an estimate made from a schlieren picture of the 
flow in figure 7. The ‘pulsating ’ thickness predicted by Cheng’s method is clearly 
shown with the outer edge coming very close to the wall at the first ‘neck’. 
The estimate using the tangent-wedge law is more realistic with the layer thinning 
slowly but continuously in the downstream region. 

0 1 2 3 4 5 
x inches 

FIGURE 7. Boundary-layer growth over a cubic concave body, (y, = zs/150, where z and 
yu are in inches). - 1,6* Newton-Busemann pressure law; - 2, S* tangent-wedge rule; 
-0-, shock position from photograph; -A-, ‘edge’ of boundary layer as measured 
from schlieren photograph. 

Both estimates describe broadly the main features of the flow. Near the leading 
edge the displacement effect is dominant and the layer grows much as it would 
over a flat plate. Then as the surface slope increases so the incidence effect grows 
in importance and the slope of the outer edge of the layer approaches that of the 
wall. The approximate estimate of boundary-layer thickness taken from a 
schlieren picture confirms these trends. The favourable comparison between the 
measured pressure distribution along the cubic surface and an estimate made 
using the tangent-wedge rule is shown in figure 8. 

3.4. Convex surfaces 

For convex surfaces Cheng’s method does not give oscillatory answers, the 
boundary layer growing rapidly but smoothly in the helpful pressure gradient. 
Since the Newton-Busemann law is used the theory can only apply if yd is 
positive, i.e. in regions close to the leading edge or where the negative body slope 
is small. Figure 9 compares the pressure distribution over three surfaces of the 
family Y = - X n  where n = 1, 2 and 3. 
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3.5. Plow past compression corners 

As now expected Cheng's method predicts an oscillatory behaviour more violent 
than that found experimentally. Therefore, only the method suggested by 
Sullivan has been used to  compare some theoretical predictions with experimental 

FIGURE 8. Pressure distribution on a concave cubic body. y, = x3/150 where x and yw 
are in inches and 0 < x 4 5.1. - , theory; -0-, measurements, M ,  = 12.25, 
Re = 0.86 x 105 per inch. 

I I I I 

h 
N 
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%? 
8 

R 
. 
v 

M2, a2/AX 

FIGURE 9. Theoretical pressure distribution on convex surfaces of the form yu = kx"; 
n = 0, 1, 2 and 3. 
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data. Comparisons have been made with three sets of pressure and heat transfer 
rate data a t  M = 9.7 and 20 (figures 10 (a)-(c)),  Considering the simplicity of the 
mathematical model and the closeness of the experimental flows to incipient 
separation the agreement between prediction and measurement is encouraging. 
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It is noticeable in many of the comparisons that the predictions ‘lag’ on the 
measurements in regions of strong pressure gradient. This may be due to the 
inability of the mathematical model to recognise either upstream influence or the 
presence of normal pressure gradients. 

3.6. Flow past expansion corners 

Both methods are applied to an expansion corner in figure 11 and both give 
predictions which are in reasonable agreement with the experimental data. 
The calculation using Sullivan’s method is particularly good over the wedge- 
surface ahead of the corner. Both methods predict the rapid drop in pressure 
just downstream of the corner and the subsequent very slow decline towards the 
final level. The comparison further shows how in practice the influence of the 

I I I 

4 c  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

FIGURE 11. Pressure distribution over an expansion corner model a t  zero incidence-a 
comparison between theory and experiment. - - 0 - -, measurements, Nib, = 14.8, 
2 = 18.9 at the corner. Theory: -, Sullivan; - - - -, Cheng; - - -, inviscid. 

corner feeds upstream, an effect which neither theory can predict, and how 
erroneous the inviscid pressure distribution is under these test conditions. 
Considering how non-similar the experimental profiles were downstream of the 
corner the predictions are surprisingly good. 

4. Concluding remarks 
Lees’ ‘local flat plate similarity ’ method for calculating boundary-layer 

growth can be combined with any one of a number of approximate pressure laws 
linking pressure to the slope of the effective body (body plus displacement thick- 
ness) to estimate the effect of viscous interaction on any two-dimensional surface 
with a sharp leading edge. If the Newton-Busemann law is used as Cheng did 
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then the results when oscillatory, greatly over-emphasise the experimental 
variations; however, the importance of the parameter (M2a2/AX) is immediately 
highlighted. If the tangent-wedge rule is employed (as Sullivan did to examine 
the flow downstream of an expansion) or the modified Newtonian rule is used, as 
in one of the examples here, then the results predict the main features of the flow 
very well. 

The theory should be useful provided the boundary-layer profiles are reasonably 
similar. Its accuracy must decrease as separation conditions are approached 
and of course this technique can give no indication of either separation or up- 
stream influence. 

Comparisons between predictions and experimental data over a wide variety of 
conditions give some confidence in the use of the mathematical model for initial 
design purposes. 

It is a pleasure to acknowledge the enthusiastic support provided by Mr D. 
Stevens of SRL who developed and ran the computer programs involved in this 
study. 
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